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THE EFFECTS OF FIELD ERRORS ON
LOW-GAIN FREE ELECTRON LASERS

1. Introduction

Intrinsic magnetic field errors § B are present in any realistic wiggler magnet. Such
errors are unavoidable and arise from imperfections in the fabrication and assembly of
wiggler magnets. State-of-the-art wiggler construction techniques yield rms field errors
on the order! (§ B/ By )rm,s =~ 0.1 —0.5%. These field errors perturb the electron beam as it

propagates through the wiggler?—16

and lead to i) a random walk of the beam centroid, éz,
ii) variations in the axial beam energy, 6., and iii) variations in the relative phase of the
electrons in the ponderomotive potential, §3. If left uncorrected, field errors ultimately
decrease free electron laser (FEL) gain®~!® (this reduction becomes more significant for

long wigglers). Reduction in gain may occur from a loss of overlap between the radiation

and electron beam (due to large §z) or from a loss of FEL resonance (due to large §¢).

The initial research on the effects of field errors, for the most part, was primarily
concerned with the random walk éz. It has been shown that the random walk éz may be
effectively controlled by i) transverse beam focusing®~? (finite kg, where kg is the betatron
wavenumber) and by ii) periodic beam steering.?~!® By using either one or a combination
of beam focusing and periodic steering, in principle, the random walk §z may be kept as
small as desired. The major conclusions of the present work are the following. Given that
the random walk éz may be effectively controlled, the phase deviation 81 is the primary

3-16 In

physical parameter characterizing loss of gain for FELs in the low-gain regime.
particular, in order to avoid significant reduction in gain, it is necessary that [6¢| << 2.
In addition, transverse beam focusing is not effective in controlling é3. Specifically, it may
be shown that the mean phase deviation {§%) is independent of transverse focusing (inde-
pendent of kg), where (...) signifies an ensemble average. Furthermore, beam steering?~!°
may be used to reduce |63| when® Ls < Ag, where Ls is the length over which the steer-
ing is performed and Ag = 2w /kg. As an example, for kg = 0 and onc steering segment,

(64) = (1/3)(6¥) N, where (84} n is the value in the absence of steering.

As a further motivation, it is appropriate to consider some aspects of wiggler design.
Typically, when “ordering” a wiggler from a vendor, limits are placed on § Brm, = (6B2)1/2

and | [ dz6B|. To meet these specifications, the vendor may “arrange” the magnet poles

Manuscript approved October 17, 1991.




(i.e., actual pole rearrangements, the use of shims, judicious magnet selection, etc.) in
an optimum sequence'2~1® such that | [ dz6 B| is minimized. This and other research®~!®
indicates, however, that for low-gain FELs the optimum “figure of merit” to minimize is

not the line integral | [ dz§ B|, but the magnitude of the phase deviation |§v].

In the following, the effects of random transverse magnetic field errors, § B, (z), on
the performance of low-gain FELs are studied analytically and numerically. In particular,
the transverse displacement, paraliel energy variation and relative phase deviation of an
electron beam propagating through a wiggler are calculated neglecting the effects of finite
beam emittance, initial beam energy spread and wiggler field tapering. Furthermore, the
FEL gain in the low-gain regime is determined in the 1D limit, assuming a plane wave,
non—diffracting radiation field. Expressions are derived for a particular FEL quantity Q for
a single wiggler realization (a specific set of field errors) and for an ensemble of statistically
identical wigglers. The ensemble averages (the mean and the variance) of the quantity Q
are useful for determining the most probable range of @ for a particular member of the
ensemble. The remainder of this paper is organized as follows. The random walk of the
beam centroid and the consequent variations in the axial beam energy are discussed in
Sections Il and III, respectively. The deviations in the relative phase resulting from the
field errors are examined in Section IV. In Section V, the effect of the field errors on the
FEL gain in the low-gain regime is determined. The benefits of beam steering are analyzed
in Section VI and addition methods for reducing the detrimental effects of field errors are
discussed in Section VII. This paper concludes with a discussion and summary in Section

VIIL




II. Transverse Beam Centroid Deviations

As the electron beam propagates through the wiggler, the electrons experience random
velocity kicks v, via the v, x § B, random force. The transverse centroid motion of an
electron beam passing through a wiggler with transverse gradients (weak focusing) and

finite field errors is characterized by an equation of the form®
d’6z/d2* = —k%6z + kywau6B, /v, (1)

where k,, is the wiggler wavenumber, kg = kya,/(1/27) is the betatron wavenumber,
6B, = 8By /B, is the normalized field error, B,, is the ideal wiggler peak magnetic field,
a, = eB,/ky,mc?, v is the relativistic factor of the electron beam and z is the axial
propagation distance. The first term on the right represents the focusing force due to the
transverse gradients in the wiggler field, whereas the second term on the right represents
the random force due to the field errors. This equation may be solved to give the random

centroid motion®

wkw * [ [ > '
68, = = . / dz' coskg(z' — 2)6B,(2"), (2)
0
awkw f r . ' - []
dz = — / d2’' sinkg(2' — 2)6B,(2'), (3)
vks Jo

where 63, = év./c is the normalized transverse velocity deviation.

Given the precise functional dependence of the wiggler errors § B,(z) for a given wig-
gler, the above expressions may be used to calculate the transverse orbit deviations §3.(z)
and éz(z) for that specific wiggler. However, one does not always know ahead of time
the full functional dependence of §B,(z). Instead, one may know only certain statistical
properties of the field errors, such as the rms value § B,,,,. Hence, it is useful to consider
an ensemble of statistically identical wigglers for which the statistical properties of the
field errors are known. By performing appropriate averages over this ensemble, one may
determine the mean (Q) and variance ¢ for a quantity Q and, hence, determine the most
probable range of a single realization of Q. Here and throughout the following, § B,(z) is
assumed® to be a random, homogeneous function with zero mean, finite variance and with
an autocorrelation distance given by z., (z., ~ A, /2 is assumed). Details of the statistical

properties of of the field errors § By(z) are discussed in Ref. 6.

3




Statistically averaging over an ensemble of wigglers, it is possible to determine the

mean-square centroid motion® (neglecting the effects of finite beam emittance)

66 = b (= + 5220, ()
_ D _ sin2kgz
=g (- "52) (5)

where D = a2 k2 (6B2)z.,/(27%). Physically, the centroid orbits §z and 83, represent
diffusing betatron orbits characterized by a diffusion coefficient D. Notice that by in-
creasing kf, by additional external focusing, one may, in principle, keep §z,,,, as small
as desired. (The minimum centroid displacement is limited by finite emittance effects,
which are neglected in the present discussion.) Furthermore, notice that in the 1D limit,
(2kpz)? << 1, (682) = 2Dz and (6z?) = 2D2*/3, as found previously by Kincaid.2 Hence,
weak focusing (finite kg) is effective in reducing the asymptotic scaling of the random walk
6Zrms from 2z3/2 to 21/2, To avoid loss of the overlap between the radiation and electron
beam, it is desirable to keep (§z?) << r2, where r, is the radiation spot size. A detailed
discussion of transverse orbit d=viations arising from random field errors in various wiggler

configurations is given in Ref. 6 and summarized in Appendix A.




II1. Axial Beam Energy Variations

Not only do the field errors perturb the transverse motion of the electrons, they also
perturb the axial motion. This is true since a static magnetic field conserves total electron
energy. The axial motion may easily be calculated® using the above expressions for the
transverse motion along with 32 + 32 =constant. One may calculate various statistical
moments of the axial motion, such as the mean axial energy variation (6v,) = (v;) — 7z0-
For example, the mean energy variation for a helical wiggler with transverse focusing is
given by

(6v:) _ _(1+al/4) ,

Yzo0 - 2(1 + a2,)2 awktza ((632) + (533)) 2.2, (6)

where the limit (2kgz)? >> 1 has been assumed and 2z, = 2., = Zcy. A detailed discussion

of the axial energy variation for various wiggler configurations is given in Ref. 6.

Statistically, (6v.) may be interpreted as an effective energy spread due to field
errors.® This effective energy spread may lead to a loss of FEL resonance. Heuristi-
cally, in order to maintain resonance, one expects that in the low or high gain regime
the effective energy spread must be small compared to the intrinsic FEL efficiency 7,
[{6792)1/7z0 < 1. In the trapped particle regime, maintaining resonance implies that the
effective energy spread must be small compared to the depth of the ponderomotive well,
[{692)1/720 < |e®p|/(ymc?), where &, is the ponderomotive potential. For example, in the
low-gain regime, n = 1/(2N), where N is the number of wiggler periods. The inequality
[(67:)]/7:0 < n implies §Bpm, < 1/(7N) =~ 0.3% for N = 100 (where a2, ~ 1 has been
assumed and §B,,,, = (§B.)1/? = (§B,)!/?). One should keep in mind that other sources
exist which contribute to the effective energy spread (e.g., initial beam emittance and en-
ergy spreads due to transverse gradients in the wiggler fields) and these factors should be

considered in a complete discussion of acceptable beam energy spreads in FELs.




IV. Deviations in the Relative Phase

To quantify how the parallel energy variation aftects FEL gain, it is necessary to

consider the relative phase 1 of the electrons in the ponderomotis wave,
dy/dz = k + ky — w/(cB:)- (M

As is discussed below, the FEL gain is directly determined by the behavior of the relative
phase ¥. In the small signal limit (ag — 0, where ap is the normalized radiation field), the
electron energy is constant and the axial electron velocity is given by 32 = 82 -2, where £,
is the initial normalized electron velocity. It is convenient to write 8, = 8,0 + 683, where
B 1o is the ideal electron wiggle velocity in the absence of field errors and |61 /B10]? << 1.

5~

The deviation in phase §3 due to the field errors®~® is given by

o= -85 [ de' (281060, + 85, ®)

where 32, = B2 — f%,. The specific behavior of §3 depends on the specific behavior of
the transverse motion 63, arising from the field errors. This motion has been examined
in detail in Ref. 6 and is summarized in Appendix A. In the following, the mean phase
deviation (69) will be determined for (i) helical wigglers, (ii) linear wigglers with flat pole
faces, (iii) linear wigglers with parabolic pole faces and (iv) an average of (§¢) over a

wiggler period will also be determined.

(i) Helical wigglers. Consider a helical wiggler (with weak focusing) described by
the normalized vector potentials given by Eq. (A1) in Appendix A. The deviation in the

iransverse electron motion arising from the error éa; is given by
88; = (aw/27)k 6y coskyz + 66, (9a)

68, = (a.w/27)k% 62 sink,z + 83,, (9b)

where the orbit deviations éz, 8y, 63, and §3, are given by Eq. (A3)-(A6). Statistically

averaging the phase deviation §% over an ensemble of wigglers gives

(64) = - g’; (“‘”:"’)2 %{ ((633) + (5193)) 2
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+ ((63:) - (535)) [W sin2kyz + — 4k2 (cos2kyz — )

1 1 fcos2(ky + kg)z cos2(k, — kg)z
Ak - kg) " By ( (kw +kg)  (ku—kp) )] } (10)

(ii) Flat pole faces. Consider a linear wiggler with flat pcle faces described by the
normalized vector potential given by Eq. (A11). The deviation in the transverse electron

motion arising from the field errors is given by
66, = (aw/27)k26y* coskyz + 68;, (11a)
68, = 88y, (115)

where the orbit deviations éy, 63, and 63, are given by Egs. (A4), (A6) and (A13).
Statistically averaging the phase deviation §v' gives

(69) = ;’c (““’:‘”)2 52-{ ((682) + (682)) =2

+ (6B2%) [i sin 2k, z + 1 (cos 2kyz ~ 1)

2k 4k2,
1 1 [cos2(ky + kg)z cos2(k, — kg)z
T - 4(kz, — k3) T Bk, ( (ko +kg)  (ku—kp) )] } 12

(it1) Parabolic pole faces. Consider a linear wiggler with parabolic pole faces described
by the normalized vector potential given by Eq. (A16). The deviation in the transverse

electron motion arising from the field errors is given by

88, = (aw/4‘7)k?g(522 + 6y*)cosk, z + 88, (13a)
6By = —(ayw/27)k26zéy cosk,z + 6By, (13b)

where the orbit deviations éz, §y, 63, and 83, are given by Eq. (A3)-(A6) with kg replaced
by kg/+/2. Statistically averaging the phase deviation §3 over an ensemble of wigglers gives

, w [awks\?® z 29 ~s 2
ww=—5(7 )gcmHwM{z
. 1
+ 'é‘k_‘ sin kaz + by (COS 2k F A ) m
1 [cos(ka + \/ikg)z cos(2k,, — \/ikg)z} }

T -

(VZky + ko) (V2ky — kp)

(14)
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(iv) Wiggler averaged result. Notice that if the above results for the mean phase
deviation, Eqs. (10), (12) and (14), are averaged over a wiggler period, then to leading
order (6¢) is given by

(b9) = - 552 (1652) + (68})) =5, (15)
where the resonance condition w/c = 2k,~? /'r_zL has been used and z. = z,, = z.y has
been assumed. Here, 72 = 1 + a% for a helical wiggler and 92 = 1 + a2,/2 for a linear
wiggler. Equation (15) is simply the result for the phase deviation as obtained from 1D
theory in which transverse gradients (weak focusing) are neglected, i.e. kg = 0. Hence,
it is clear that transverse weak focusing (finite kg) does not significantly reduce the mean

phase deviation. (It should be mentioned tha in the trapped particle regime, the effects

of the synchrotron motion of the electrons may reduce?* (§y).)

Physically, 64 may be interpreted as an oscillation of the ponderomotive well due to
field errors. Maintaining FEL resonance requires §1 to be small compared to 2, i.e., the
width of the well. In the low-gain regime, this phase deviation must be kept small over the
entire wiggler length L. Requiring | (§%(z = L)) | << 27 implies §Bym, < 1/(7N) ~ 0.3%
for N = 100 (where a2, ~ 1 has been assumed and 6 B,p,, = (§B.)!/? = (6B,)*/?). This is
the same condition as obtained above from considering the effective energy spread. In the
high-gain regime,” the situation is somewhat different, since the length scale over which
the FEL resonant interaction occurs is the e-folding length 1/, where I' is the spatial
growth rate of the radiation. Maintaining resonance in the high-gain regime corresponds
to keeping 8¢ small over an e-folding length: [(6¥(z =1/T))| < m. Since, typically
1/T << L, one expects the high-gain not to be strongly affected” by the phase deviation

8¢ (in contrast to the low-gain).




V. Degradation of FEL Gain

In principle, the magnitude of the random walk of the electron beam centroid may
be kept as small as desired through the use of transverse focusing. This, however, is not
the case with the phase deviation, as is discussed in the previous section. In the following,
the effect of the phase deviation on the FEL gain in the low-gain regime is examined
quantitatively. In determining the FEL gain, a number of assumptions are made. It is
assumed that overlap is maintained between the radiation and electron beam, i.e., the
ran»m walk of the electron beam centroid remains smaller than the beam radius. Also,
since weak focusing (transverse gradients) is ineffective in reducing the phase deviation,
the gain wi'l be considered in the 1D limit. The effects of tapering are neglected and a
non -diffracting, plane wave radiation field is assuned. Furthermore, the effects of coupling
to higher order harmonics (for linear wigglers) will be neglected. For a relativistic electron
beam, the normalized amplitude gain, G, is related to the relative phase of the electrons,
¥, byl

G = /‘ dz' [sinv)],, (16)
0
where [...]p signifi.s an average over the intial phase of the electrons. The quantity G is

proportional to the standard definition of the small signal gain.!’

The relative phase ¢ may be determined in the small-signal regime for which a2 >>

6a®2 >> a%. The relative phase may be written as ¥ = (%) 49, where (%) is the relative

phase in the absence of the radiation field,

vO(2) = Yo + pkuz + 6%(2), (17)

and where 1 is the phase contribution resulting from the radiation field. Here, v is the

initial phase of the electrons, p is the normalized frequ.acy mismatch,
b= —(w - wo) fwo, (18)

where wy = cky(1 + B:0)B:072/7% is the resonant frequency, and 6y is the phase deviation

due to random field errors as is given by Eq. (8). The phase contribution resulting from

the radiation field, ¥, is determined from the pendulum equation'’

d? 4k? .
Tt = ;g”-a,.,an sin $(%(2), (19)
L




which gives

2 z
¥1(z) = é’;—wawag-/ dz'(z — 2')sin${9(2'). (20)
Y1 0
Assuming |¢;| << 1, the expression for G may be expanded giving
G:/ dz' [1/)1 cos¢(°)] . (21)
0 0

Inserting the expression for 1;, Eq. (20), indicates that the normalized amplitude gain is

proportional to G, where

G= /oz d:' /o" dz" [(z' ~ 2")sin (¢(°)(z') - ¢(°)(z"))]° , (22)

where [sin($()(z') + ¥(°)(z"))] , = 0 has been used. Averaging over an ensemble of wig-

glers gives an expression for the mean normalized gain, (G),

(G) = -/o dz' /o‘ dz" (z' — 2") (sin[uky, (2" — 2") + Aby (2',2"))]), (23)

where Aéy(z',2") = §3%(2') — 6¥(2"). When Aéyp = 0, (G) gives the normalized mean

gain in the absence of field errors.

The precise evaluation of the ensemble average (G) is nontrivial. In particular, the
evaluation of (G) is dependent upon the statistical distribution of the phase deviation év.
Consider random field errors §a; which are Gaussian distributed. If the terms linear in the
field errors (terms proportional to §3, ) dominate the integrand in the expression for 84,
Eq. (8), then 6% will tend to be Gaussian distributed. If the terms quadratic in the field
errors (terms proportional to §32 ) dominate the integrand in the expression for §¢, Eq.
(8), then ¢ will tend to be Gamma distributed. More specifically, the statistical behavior
of 6% depends on whether the linear or quadratic terms dominate in the expression for
variance o of §y, where o? = (6y¥?) — (6¢)%. It may be shown (see Appendix B) that
for long wigglers, in which the effects of field errors are important, o is dominated by the
quadratic terms in Eq. (8). Hence, the linear terms in Eq. (8) may be neglected and the

phase deviation, in 1D, may be approximated by
89 = ~(ko/7}) [ ds'801(2). (24)
0
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Furthermore, the variable A6y is assumed to be Gamma distributed. Hence, the statistical

average (G) may be evaluated using the Rice-Mandel approximation,?!® giving

A\ ? 5! d (2 — 2" 22\~ f/2
@)= [as' [ a2 —m) (14 (8897 7) (25)
x sin [pkw(z' ~ z") + ftan™? ((Aas$)/ ],

where f = (A&¥)?/ ((A6¥?) — (Aé¥)?). A more detailed discussion of the statistical
evaluation of (G) is given in Appendix B. Equation (25) describes the reduction of the

mean gain due to random fields errors in the low~gain regime for an untapered wiggler.

The mean of the quantity A1, as well as the square of its variance, may be calculated

analytically. Using Eq. (24), one finds

ks A ' n2
(A6) = o ((513:) (633)) 2 (zz_z ) (26)
k::a:: f A 2 ' "
(A847) - (aby)? = 252 ((6BD) + (5B))) 22 (' - ="

x (2 +32" 4 2272") @1

where z. = 2¢p = z¢y.

The mean gain (G) (normalized to the maximum gain in the absence of field errors)
is a function of only two parameters: the product of the frequency mismatch with the

number of periods, uN, and the mean phase deviation at the wiggler end,

k3 2 _
(69)maz = (6%(z = L)) = — 2";/ 3 ((6B2) <63';’)) 2 L. (28)

Using these two parameters, (G) may be written as

= ¢ id‘r i'd." 3 _ 3" (1 sv)\2  h? -f/2
Gy =1t [ ar [ 4 - ) (14 (68)hack?) )
x sin [2ruN(2' — 2") + ftan™! ((6¥)mazh)] s
where 2 = z/L and
f = (3/4)(2-1 n) /(—12 + 32112 + 3 ‘-l-u) (30a)
h= (3"~ 2‘"2) /f. (30b)

11




Equation (29) indicates that (G) decreases as (6%)maz increases. In a similar fashion, it
is possible to calculate an expression for the variance of the gain, the result of which is
given in Appendix D. This variance tends to be large, as is indicated by the numerical

simulations discussed below.

Equation (25) may be evaluated numerically to determine the behavior of the mean
gain. Figure 1 illustrates this behavior, in which the mean gain (G) is plotted as a function
of the frequency mismatch parameter uN for several values of normalized rms field error
6B.m, (0.0%, 0.1%,...,0.5%). The parameters in Fig. 1 correspond to a linearly polarized
wiggler with B,, = 54 kG, A, = 28 cm, N = 130 and 4 = 350 in the limit kg = 0
(transverse focusing is neglected). Notice that with increasing rms field error, the maximum
mean gain decreases and the position of this maximum moves to higher values of frequency
mismatch. Figure 2 shows the peak gain (G )maz as a function of normalized rms field error
6 B,.m,, as obtained from Eq. (25), for the above parameters. The x’sin Fig. 2 are the result
of an FEL simulation code for individual wiggler realizations (particular arrangements of
random field errors). In these simulation runs, a random field error model similar io that
of Kincaid?:®*~® was used along with an electron beam of current 2.0 A with an emittance

of 10 pm-rad. Notice that the large spread in the simulation results indicates a relatively

large variance of the gain.

It is also possible to calculate the effect of wiggler errors on the spatial growth rate in
the high-gain regime.” Numerical results (for a linear wiggler with B,, = 2.4 kG, A,, = 8.0
cm and L = 15 m; and an electron beam with energy 50 MeV, current 1.5 kA and emittance
4.4 mm-mrad) indicate that even for large normalized rms field errors, 6B, = 0.5%, the
mean spatial growth rate is only slightly reduced (by < 4%). This is in agreement with

the discussion presented at the end of Section IV.
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VI. Beam Steering

One method for reducing the detrimental effects of field errors is through the use
of beam steering?~!° (external fields are used to steer the electron beam back to axis).
Analytically, this may be modeled by injecting the electron beam with an initial transverse
velocity 8, such that the centroid displacement is zero at the end of the wiggler éz(z =
L) = 0. The intial transverse velocity may be specified in terms of the perturbed transverse

velocity in the absence of steering 63, v by the relation

1 L
Bu=-7 [ ddbun() (31)

where 63, v is given by Eq. (2). In the 1D limit, §8: n(z) = §a1(2)/7.

Using the above expression for 3,;, one may calculate the electron motion in the
presence of the field errors including the effects of beam steering. For example, the mean

square transverse orbit deviation in the absence of transverse focusing (kg = 0) is given by

(62%) = Ef—‘iy—k.‘,i(émz)zc, [z"‘ + ez’L (l - 3{ + %)] , - (32)
where ¢ = 1 with steering and € = 0 without steering, as derived previously by Kincaid.?
Notice that with steering, the rms transverse orbit displacement is maximum at z = L/2
and is equal to 1/4 the value of the rms displacement obtained at the end of the wiggler

in the absence of steering, i.e.,

(6z(z = L/2,e = 1))/? = (1/4)(62%(z = L,e = 0))'/2. (33)

Similarly, the phase deviation with (¢ = 1) and without (¢ = 0) steering in the absence

of transverse focusing (kg = 0) is given by

2
(69) = _"23'—’:‘:'1 ((61‘3:) + (61'33)) zc [z’ + e'%f (1 - :% + %)} , (34)
4

where it has been assumed 2. = 2., = zy. Both with and without steering, the mean
phase deviation reaches a maximum at z = L. In particular, notice that the effect of

steering is to reduce the mean phase deviation at the wiggler end by a factor of 1/3,

(6%(z = Lye = 1)) = (1/3)(6%(z = L,e = 0)). (35)
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It is also possible to calculate the effect of steering on the mean gain, (G). Again,
Eq. (25) applies, where the mean and variance of the quantity Aéy including the effects
of steering are given in Appendix C. Similarly, an expression for the variance of the gain

including steering is given in Appendix D.

The effect of beam steering at the wiggler entrance on the phase deviation 8¢ is
illustrated in Fig. 3 for the cases (a) without steering and (b) with steering. Here the solid
curves represent the mean (63} and the dashed curves represent one standard deviation
about the mean (6y) + o, where o is the variance of the phase deviation. These plots
are for a linearly polarized wiggler with B, = 5.4 kG, A, = 2.8 cm, N = 130, v = 350
and 6§ B,m, = 0.3% in the limit kg = 0 (transverse focusing is neglected). Notice that the
effect of steering at the wiggler entrance reduces (§3) by 1/3 at the end of the wiggler,
as is indicated by Eq. (35). Also, notice that steering has reduced the variance of the
phase deviation by an equally significant amount. For cases in which kg # 0, it is possible
to show? that steering reduces the mean phase deviation when the length over which the
steering in performed is less than the betatron wavelength, L, < Ag. For cases in which

L, > Ag, beam steering may increase the value of (§1).

The effect of beam steering at the wiggler entrance on the FEL gain (in the low-
gain regime) is illustrated in Figs. 4-6. In Fig. 4, the mean gain (G) including the effects
of steering is plotted as a function of the frequency mismatch parameter uN for several
values of normalized rms field error §B,, (0.0%, 0.1%,...,0.5%). The parameters in Fig.
4 correspond to a linearly polarized wiggler with B,, = 5.4 kG, A, = 2.8 cm, N = 130 and
v = 350 in the limit kg = 0 (transverse focusing is neglected). Figure 4, in comparison to
Fig. 1, clearly indicates that the mean gain is enhanced through the use of steering. For
example, for § Bym, = 0.3%, steering increases the peak gain by a factor of approximately
2.5. Figure 5 illustrates this comparison, in which the peak gain (G)maz, with and without
the effects of steering, is plotted as a function of normalized rms field error §B,,,, for the
above parameters. In Fig. 6, the peak normalized gain (@) masz is plotted as a function of

the maximum mean phase deviation, (6%)maz, for the above parameters without steering

in Fig. 6(a) and with steering in Fig. 6(b). The curves in Fig. 6 remain unchanged for

14




various values of § B.m, and N, hence, the maximum normalized mean gain (é)mu is a
function of only (6%)masz- To avoid significant reductions in the mean gain, Fig. 6 indicates
that it is necessary to have |(§3)] << 2r. Figure 7 shows the peak mean gain (G)mez,
including the effects of steering, plotted as a function of the normalized rms field error
§B,.., for the above parameters. Included in Fig. 7 is the variance of the normalized gain,
as obtained from Appendix D, for several values of §B,,,,. As was indicated by the kinetic

simulations for individual wiggler realizations, the variance of the gain tends to be large

and increases with increasing rms field error.
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VII. Error Reduction Techniques

Several methods exist for reducing the detrimental effects of wiggler errors. Above
it was discussed how steering®~!° the electron beam at the entrance of the wiggler may
improve FEL performance. This concept may be generalized to the case of multiple beam

steering’SA,B,lO,lO

in which the electron beam is steered back to axis in several places along
the length of the wiggler. It may be shown (see, for example, Ref. 8) that in order to
reduce the phase deviation, it is necessary to perform steering over segments of length Lg
shorter than a betatron wavelength, Ls < Ag. In addition to beam steering, one may
consider wiggler errors which are correlated.® The results discussed above are for wigglers
with random errors which are assumed to be uncorrelated for separation distances greater
than z. ~ A, /2. By considering a wiggler in which the error for a given magnet pole is
correlated to the errors of the surrounding poles, one may construct beneficial correlations

which reduce the detrimental effects of the errors.®

Alternatively, one may reduce the detrimental effects of the errors by considering
an optimal arrangement of the magnet poles.!2~1® That is, the magnet poles are to be
arranged in such a way that the detrimental effects of the error of a given pole tend to
cancel those of the surrounding poles. More specifically, the magnet poles are arranged
in such a way as to minimize an appropriate “cost function”. For example, one may
choose to arrange the poles such that the magnitude of random walk |6z| is minimized,
where éz ~ [dz'sinkg(z' ~ z)6B,(z'). (Notice that minimization of | f dz6B| does not
correspond to minimization of |6z|.) However, the results discussed above indicate that a
more appropriate cost function for low-gain FELs is the magnitude of the phase deviation
|63|, 6 ~ [ d2'(2B106B1 + 6B%), as is given by Eq. (8). By minimizing |89}, one reduces
the amount of gain loss. Ideally, one would like to maximize the actual expression for the
gain, Eq. (22), but the functional dependence of the gain on the field errors appears much

too complicated to be of practical usefulness.
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VIII. Conclusions

An electron beam traveling through a magnetic wiggler with finite field errors experi-
ences random v, x § B, forces which perturbs the beam motion. This leads to a random
walk of the beam centroid, éz, as well as a random deviation in the relative phase of
the electrons in the ponderomotive wave, §3. In principle, the transverse displacement of
the beam centroid, §z, may be kept as small as desired through the combined effects of
transverse beam focusing and beam steering. This, however, is not the case for the phase
deviation §3. Transverse beam focusing is found to be ineffective in reducing the mean
phase deviation ((§¥) is independent of kg). Beam steering® may be used to reduce |63
only when Ls < Ag. As an example, for the case kg = 0 and using steering at the wiggler
entrance indicates that the mean phase deviation at the wiggler end is reduced by a factor
of 1/3. The phase deviation leads to a reduction of FEL gain (the low-gain regime is
affected more strongly than the high-gain regime). The normalized mean gain was calcu-
lated and found to be a function of only two parameters, uN and (8§%¢)mez, as indicated
by Eq. (29). To avoid significant loss of gain in the low-gain regime, it is desirable {0 keep

|6¢] << 2x. In particular, requiring |(§%)| << 27 gives, using Eq. (15),
. ., \1/2
((682) + (6B2)) " < a/(xN), (36)

where a = (1 + a2)!/?/a,, for a helical wiggler and a = (1 + a?/2)!/?/a,, for a planar
wiggler. For example, a helical wiggler with N = 100, a,, =~ 1 and §Brms = (615’,)1/2 =
(63,,)‘/ 2 implies that the normalized rms field error must satisfy 6Brms < 0.3%. Possible
error reduction techniques include multiple beam steering,®!° correlation of field errors®
and optimal arrangement of magnet poles.’3~15 To reduce the detrimental effects of field

errors on the gain in low-gain FELs, an optimal arrangement of poles corresponds to

minimization of |§¢|, where 8% is given by Eq. (8).
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Appendix A:

Transverse Orbit Deviations

This appendix summarizes the results of Ref. 6 in which the transverse orbit deviations
arising from random wiggler field errors were calculated for (i) helical wigglers, (ii) linear

wigglers with flat pole faces and (iii) linear wigglers with parabolic pole faces.
(i) Helical Wigglers. Consider a helical wiggler (with weak focusing) described by the

normalized vector potential

a: = ay(1 + k2y?/2) cos ky 2 + ba.(z2),
(41)
a, = aw(1 + k2z%/2)sink, z + bay(z2),

where it is assumed k2z? << 1 and k2y? << 1. Here, fa, and §a, are related to the field
errors 6B, and 6B, by

Say(2) = aykey / " d2'6B,(+')/ B,
o - (A2)

da,(z) = —ayky /ol dz'§B.(z')/B,,.

The deviations in the transverse electron orbit arising from the errors éa, are given by

§By(2')

§z(z) = — ''—2) B, (A3)
§B.(Z
5y(z) = 2, (44)
which correspond to the normalized transverse velocity deviations
!
8.() = 2= L L (45)
By
z !
§6,(z) = - Gokv / dz' coskg(z' — z)égé(i), (A6)
7 0 w

where kg = a,ke/ V2v. Statistically averaging over an ensemble of wigglers gives the

mean square quantities

2 2 .
2 _ [ Gukw §B; _zﬂ( B sm2kgz)
‘6’)’(7kn)<83>2 Tk ) (47)
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ko \? /6B2\ = sin 2kgz ‘
6 2 —_ Ay Ry z \ Scz _ B )
= (55) (75 (- 55%); “9)
2 2 .
2, _ Awky 53, Zey sin2kgz
o8 = (22) (F2)% (= + 522). (49)
2 2 .
2\ _ [ Gwkw 8B \ zc sin 2kg2
oa = (*2) (52)% (-+ =8, (410

(i1) Flat pole faces. Consider a linear wiggler with flat pole faces described by the

normalized vector potential
a = a, coshkyycoskyze; + da.(z)e; + day(z)e,. (A11)

The z component of the orbit deviation is described by

awku [, [F  46B,(z")
§z(z) = = w/ dz'/ d"' —L - A12
(=) v 0 ° ‘ B, ( )
56:(z) = “'"7"‘" / dz BF) (413)
0 w

and the y component of the orbit deviation is described by Eqs. (A4) and (A6). Statistically

averaging over an ensemble of wigglers gives the mean square quantities

2 2

(57) = (a..;k,.,) <§v>zc,fg, (A14)
2 2

662 = (222 ) (Z2 oo (415)

where (6y?) and (§32) are given by Eqs. (A8) and (A10).
(iis) Parabolic Pole Faces. Consider a linear wiggler with parabolic pole faces described
by the normalized vector potential
s = Gy cosh(kywz/V/2) cosh(kyy/V2) cos kyz + Sa(z),

(A16)
a, = —ay, sinh(kyz/v2)sinh(kywy/V2)cos kyz + Say(z).

The deviations in the transverse electron orbit are given by Eqs. (A3)-(A6) with kg replaced
by kg/+/2. Similarly, the mean square quantities are given by Eqs. (A7)-(A10) with kg
replaced by kg/v/2.
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Appendix B:
The Rice-Mandel Approximation

Evaluation of the average (G), given by Eq. (23), is dependent upon the statistical
distribution of the phase deviation §. The expression for §% consists of terms linear in
the field error §a, as well as terms quadratic in the field error. The statistical behavior of
51y depends on whether the linear or quadratic terms dominate in the expression for the
variance o of §1, where 02 = (§y2) — (69)2. It is possible to calculate the contribution
of the linear terms to the variance of the phase deviation, o, as well as the contribution
of the quadratic terms to the variance, og, in the 1D limit with or without the effects of
steering. One finds that the relative magnitude of quadratic terms to the linear terms in

the phase variance is given by
3 = - (8B1)N9(2), (51)

where N = L/), is the number of wiggler periods, L is the wiggler length, 2 = z/L and
zc ~ Ay /2 was assumed. In the absence of steering, g(2) ~ 23, whereas with beam steering

at the wiggler entrance (one steering segment), g(2) is given by
9(3) ~ 43%(1 + 3:%)7" [(2 — 82 + 135%) + 0.2 (482" + 143*)] . (B2)

With steering, Eq. (B2) gives g(1/4) ~ 0.14, g(1/2) ~ 0.13, g(3/4) = 0.12 and g(1) ~ 0.20.
As an example, consider (§B2) ~ 0.3% and g(Z) ~ 0.1. Require 03/0} >> 1 indicates
that N >> 26. Hence, for long wigglers the statistical behavior of 83 is dominated by the

quadratic terms and the linear terms may be neglected in Eq. (8).

If the linear terms are neglected in Eq. (8), then the equation for the phase deviation
reduces to the generic form

y= /o d2'z*(2'), (B3)

where y represents the phase deviation and z represents the random field error. If z is

Gaussian distributed with zero mean, then y will tend to obey a Gamma distribution. The

Rice-Mandel approximation!® assumes that the probability distribution for y, P(y) has

the general form of a Gamma distribution. The parameters occurring in this general 1>rm
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are determined by moment matching, i.e., by requiring fdyP(y) = 1, fdyP(y)y = (y)

and [dyP(y)y* = o2 + (y)?, where the mean (y) and the variance o, are assumed to be

where s = (y)?/ cr:. Knowing the distribution P(y) enables various statistical averages to

known. One finds

be calcuiated. For example,

(exp(iy)) = /o ~ dyP(y) expliy) = (1 + %2—2)_'/2 exp <ia tan~? %)) . (B5)

Notice that (y) decreases algebraically as (y)? increases (assuming s to be roughly con-

stant). The imaginary part of the above expression was used to calculate (G) in Eq.

(25).

As a final note, it should be mentioned that if the linear terms in the expression
for the phase deviation dominate the statistical behavior, then y = [dz'z(z') would be

Gaussian distributed. In particular, (exp(iy)) = exp(i(y) — 02/2). Hence, if y is Gaus-

2

sian distributed, (exp(iy)) decreases exponentially as o2

increases. This implies that for
Gaussian distributed phase deviations 6%, the mean gain (G) would decrease much more
rapidly with increasing (§3)? than is predicted by the Rice-Mandel approximation, Eq.

(25).
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Appendix C:
Statistical Moments of Aéy

Various statistical moments of the function Aéy = é3(z') — 69(z") may be calculated
analytically in the 1D limit including the eflects of beam steering at wiggler entrance

(one steering segment). In particular, the mean (Aéy) and the square of the variance

o3 = [Asy?) — (Asy)? may be calculated using Eqgs. (8) and (31). One finds

k3 a2

(Aby) = — —;Lzl(&éi)zc (' - 2"
1.L L 1 (€1)
x {5 (' +2") +e [5 —('+2")+ 37 (z'2 +2"% 4 z'z")} } )
6,4
o} = (557222 (2 — 2"
YL
x {1 (2'2 +32"% 4 22'2") + € 2 (52'2 "y 22':")
1 . (©2)
it ' "no_ 2 3 n3 12 _n n2
g (42 422" — L) - = (162" + 92" +1722" + 182 )
1 4 "4 von [ 12 n2 12 _n2
+ g (14 (2 +2m) #2022 (7 4+ 27) 4202727 |

where € = 0 without steering and ¢ = 1 with steering. These expressions may be used to

evaluate the mean gain with steering using Eq. (25), where f = (A§y)?/03.
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Appendix D:

Gain Variance

It is possible to calculate an approximate expression for the variance of the normalized

gain oG, where
= (G?) - (G)%. (D1)
This expression is given here for completeness. The mean square normalized gain is given
by
(G) =L+ L+ I+ +1Is, (D2)

where

dz, / dZ; dZ;%AZIAZZF(Zlazpz2az’:!)1 (D3)
0 0

o]
21 zZ2
I, =/ dzlf dz;»/ dz;/ dzf_,%AzIAzzF(zl,z;,zz,z;), (D4)
0 0 23
[ ]

22 1
Iy = dz, sz/ dz;/ dz;EAzlAng(_)(zl,z;,zz,z'z), (D5)
] z
I4 =/ dz,/ d22/ dZ’x/ dz;%AzlAzzH(_)(zl,z'l,zz,z;), ()6)
() ) 0

Is ='—/ d21/ dzzf dz;/ dz;lAzIAzzH(_,_)(zl,zi,zz,z;), (D7)
() 0 0 0 2

where Az) = 2, — 2] and Az; = 23 — z;. The functions F and H(,) are given by

1
F=exp (- 3k ) cosluku(An — Aaz) + (A, (D8)
~Ja)/2
(A(x))?
H(:!:) = (1 + —72——"
aA(+)
A
X cos [pk,,(Az; + Az2) + fa(z)tan™! (if—(i—))->] , (D9)
a(z)
where fa(+) = (A(:t))z/az(t) and
(A(£)) =(A(21,21)) £ (A(22,23)), (D10)
’fx(i—) ="2A(::.z',) + crlzl(lzvl'a)
* (UZ(.,,,;) + azﬁ(l',.lz) = ”i(zm) - 03;(,;,,;)) J (D11)
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with
k3a? .
(A(zv y)) == _T(6Bi)zc (z - y)
N =
- fad L2 2
X {2(=+3/)+6[3 (z+y)+ 37 (=* +y +zy)]},
kSat
Ch(ey) =2 (6B1)? 22 (z - y)°
71
X {% (.1:2 + 3y? +2:cy) + e[g (5:2 -y + 2:cy)
(D13)

2L 1
Sy (4z+2y- L) - 5L (162° +9y° + 17z%y + 18yzz)
1

+ T (14 (.-":'l + y‘) + 19zy (:x:2 -+ yz) + 24zzyz)] },

where ¢ = 0 without steering and ¢ = 1 with steering. Equation (D13) only holds for
z > y. When z < y, the variables z and y need to be interchanged in Eq. (D13). These
expressions, along with the expression for the mean gain, Eq. (25), may be used to evaluate
the gain variance, og, with or without the effects of steering. Numerically, this evaluation

is nontrivial.
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Fig. 1. Mean gain (G) versus frequency mismatch uN for several values of rms field error
6B, m, (0.0%, 0.1%,...,0.5%) for a linearly polarized wiggler with B, = 5.4 kG, A, = 2.8
cm, NV =130 and v = 350 in the limit kg = 0.

29




G

L S e e e
. x NO STEERING
x 0.8 -
(o) x "
_E _ SIMULATION )
~ x /
z 06 ! -
<
O k X o
é 0.4 b THEORY |
a. i |

0.2 } -

1 . X

I
0 0.1 0.2

5Brms (%)

Fig. 2. Peak mean gain (G)me. versus normalized rms field error 6B,m, for a linearly
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polarized wiggler with B, = 5.4 kG, A\, = 2.8 cm, N = 130 and v = 350 in the limit
ks = 0. The solid curve denotes the theoretical result and the x’s denote FEL simulations

for individual wiggler realizations.
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(a)

(bj

Fig. 3. Phase deviation §3 versus number of wiggler periods N (a) without steering and
(b) with steering for a linearly polarized wiggler with B, = 5.4 kG, A,, = 2.8 cm, v = 350
and §B,m, = 0.3% in the limit kg = 0. The solid curves represent the mean (§%) and the

dashed curves represent one standard deviation ¢ about the mean.
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Fig. 4. Mean gain (G) including the effects of steering versus frequency mismatch pN for
several values of rms field error § B, (0.0%, 0.1%,...,0.5%) for a linearly polarized wiggler
with B, = 5.4 kG, A, = 2.8 cm, N = 130 and 4 = 350 in the limit kg = 0.
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Fig. 5. Peak gain (C:'),,.., versus normalized rms field error 6B,m, with steering (solid
curve) and without steering (dashed curve) for a linearly polarized wiggler with B,, = 5.4

kG, Ay = 2.8 cm, N = 130 and v = 350 in the limit k5 = 0.
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Fig. 6. Peak gain (G)mae Versus maximum phase deviation (§%)ma- for a linearly polarized

wiggler with B, = 5.4 kG, A, = 2.8 cm and ~ = 350 in the limit kg = 0 for (a) no steering

and (b) with steering.
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Fig. 7. Peak gain (é)m, versus normalized rms field error §B,,., with steering for a

linearly polarized wiggler with B, = 5.4 kG, A, = 2.8 cm, N = 130 and 4 = 350 in the

limit kg = 0. The bars denote one standard deviation as obtained from the gain variance.
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